Butyrolactone I Quantification from Lovastatin Producing Aspergillus terreus Using Tandem Mass Spectrometry—Evidence of Signalling Functions

نویسندگان

  • Elina K. Palonen
  • Milla-Riina Neffling
  • Sheetal Raina
  • Annika Brandt
  • Tajalli Keshavarz
  • Jussi Meriluoto
  • Juhani Soini
چکیده

Aspergillus terreus is an industrially important filamentous fungus producing a wide spectrum of secondary metabolites, including lovastatin and itaconic acid. It also produces butyrolactone I which has shown potential as an antitumour agent. Additionally, butyrolactone I has been implicated to have a regulating role in the secondary metabolism and morphology of A. terreus. In this study, a quantitative time-course liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS-MS) analysis of butyrolactone I is reported for the first time in nine-day long submerged cultures of A. terreus. Butyrolactone I was fragmented in the mass analysis producing a reproducible fragmentation pattern of four main daughter ions (m/z 307, 331, 363 and 393) in all the samples tested. Supplementing the cultures with 100 nM butyrolactone I caused a statistically significant increase (up to two-fold) in its production, regardless of the growth stage but was constitutive when butyrolactone I was added at high cell density during the stationary phase. Furthermore, the extracellular butyrolactone I concentration peaked at 48 h post inoculation, showing a similar profile as has been reported for bacterial quorum sensing molecules. Taken together, the results support the idea of butyrolactone I as a quorum sensing molecule in A. terreus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of butyrolactone I on the producing fungus, Aspergillus terreus.

Butyrolactone I [alpha-oxo-beta-(p-hydroxyphenyl)-gamma-(p-hydroxy-m-3, 3-dimethylallyl-benzyl)-gamma-methoxycarbonyl-gamma-butyrolactone] is produced as a secondary metabolite by Aspergillus terreus. Because small butyrolactone-containing molecules act as self-regulating factors in some bacteria, the effects of butyrolactone I on the producing organism were studied; specifically, changes in mo...

متن کامل

Butyrolactones from Aspergillus terreus.

In the process development of lovastatin using Aspergillus terreus DRCC 152 in solid state fermentation, we have isolated a new butyrolactone-IV (3) along with the previously reported butyrolactone-I (1) and butyrolactone-II (2) produced under submerged conditions. The structure of compound 3 has been characterized as 3-hydroxy-5-[2-(1-hydroxy-1-methylethyl)-2(R)-2,3-dihydro-benzo[b]furan- 5 yl...

متن کامل

Transcriptomic Complexity of Aspergillus terreus Velvet Gene Family under the Influence of Butyrolactone I

Filamentous fungi of the Ascomycota phylum are known to contain a family of conserved conidiation regulating proteins with distinctive velvet domains. In Aspergilli, this velvet family includes four proteins, VeA, VelB, VelC and VosA, and is involved in conidiation and secondary metabolism along with a global regulator LaeA. In A. terreus, the overexpression of LaeA has been observed to increas...

متن کامل

Antidiabetic and Antioxidative Activities of Butyrolactone I from Aspergillus terreus MC751

The bioassay-guided isolation and purification of an ethyl acetate extract of Aspergillus terreus MC751 led to the characterization of butyrolactone I as an antidiabetic and antioxidant. The antidiabetic activity of butyrolactone I was evaluated by αglucosidase and α-amylase inhibition assays. Butyrolactone I demonstrated significant concentration-dependent, mixed-type inhibitory activity again...

متن کامل

Aspernolides A and B, butenolides from a marine-derived fungus Aspergillus terreus.

Two aromatic butenolides, aspernolides A and B along with the known metabolites, butyrolactone I, terrein and physcion were isolated from the fermentation broth of a soft coral derived fungus Aspergillus terreus. The structures of these metabolites were assigned on the basis of detailed spectroscopic analysis. The absolute stereochemistry of aspernolides A (1) and B (2) was established by their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014